Expertise Applied | Answers Delivered

Pinout

Functional Block Diagram

Description

The SP2574NUTG is a low-capacitance, TVS Diode Array designed to provide protection against ESD (electrostatic discharge), CDE (cable discharge events), EFT (electrical fast transients), and lightning induced surges for high-speed, differential data lines. It's packaged in a μ DFN package (3.0 $\times 2.0 \mathrm{~mm})$ and each device can protect up 4 channels or 2 differential pairs, up to 40A (IEC61000-4-5) and up to 30 kV ESD (IEC61000-4-2). The "flow-through" design minimizes signal distortion, reduces voltage overshoot, and provides a simplified PCB design.

The SP2574NUTG with its low capacitance and low clamping voltage makes it ideal for high-speed data interfaces such as 1 GbE applications found in notebooks, switches, etc.

Features

- ESD, IEC61000-4-2, $\pm 30 \mathrm{kV}$ contact, $\pm 30 \mathrm{kV}$ air
- EFT, IEC61000-4-4, 40A (5/50ns)
- Lightning, IEC61000-4-5, $40 \mathrm{~A}\left(\mathrm{t}_{\mathrm{p}}=8 / 20 \mu \mathrm{~s}\right)$
- Low capacitance of 3.8pF@OV (TYP) per I/O
- Low leakage current of $0.1 \mu \mathrm{~A}$ (TYP) at 2.5 V

Applications
-10/100/1000 Ethernet

- WAN/LAN Equipment
- Desktops, Servers and Notebooks

Application Example

RJ-45 Connector

Life Support Note:
Not Intended for Use in Life Support or Life Saving Applications
The products shown herein are not designed for use in life sustaining or life saving applications unless otherwise expressly indicated.

- μ DFN-10 package is optimized for high-speed data line routing
- Provides protection for two differential data pairs (4 channels) up to 40A
- Low operating and clamping voltage
- AEC-O101 qualified
Absolute Maximum Ratings

Pymbol	Parameter	Value	Units
I_{Pp}	Peak Current $\left(\mathrm{t}_{\mathrm{p}}=8 / 20 \mu \mathrm{~s}\right)$	$40{ }^{1}$	A
P_{Pk}	Peak Pulse Power $\left(\mathrm{t}_{\mathrm{p}}=8 / 20 \mu \mathrm{~s}\right)$	1000	W
$\mathrm{~T}_{\mathrm{OP}}$	Operating Temperature	-40 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SToR }}$	Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

Notes:1. Rating with 2 pins connected together per sugguested diagram (For example, pin1 is connected to pin 10, pin 2 is connected to Pin 9, Pin 4 is connected to pin 7 and pin 5 is connected to pin 6)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Characteristics ($\mathrm{T}_{\mathrm{OP}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Reverse Standoff Voltage	$\mathrm{V}_{\text {RWM }}$	$\mathrm{I}_{\mathrm{R}} \leq 1 \mu \mathrm{~A}$			2.5	V
Reverse Leakage Current	$I_{\text {R }}$	$\mathrm{V}_{\text {RWM }}=2.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$		0.1	0.5	$\mu \mathrm{A}$
Breakdown Voltage	$V_{\text {BR }}$	$\mathrm{t}_{\mathrm{t} 1}=1 \mu \mathrm{~A}$	3.0	3.7	4.5	V
Snap Back Voltage	$\mathrm{V}_{\text {SB }}$	$I_{H}=1 \mathrm{~mA}$	3.0			V
Clamp Voltage	V_{c}	$\begin{aligned} & \mathrm{I}_{\mathrm{po}}=1 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=8 / 20 \mu \mathrm{~s} \\ & \text { Any } / / \mathrm{O}_{\mathrm{p}} \text { G Ground } \end{aligned}$			4.5	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{PP}}=10 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=8 / 20 \mathrm{~s} \\ & \text { Any I/O to Ground } \end{aligned}$			7.5	
		$\begin{aligned} & \mathrm{I}_{\mathrm{PP}}=25 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=8 / 20 \mu \mathrm{~s} \\ & \text { Any I/O to Ground } \end{aligned}$			12.0	
		$I_{p p}=40 A, t_{p}=8 / 20 \mu s$ Line-to-Line ${ }^{1}$, two I/O Pins connected together on each line			20.0	
Dynamic Resistance ${ }^{2}$	$\mathrm{R}_{\text {DYN }}$	TLP, $\mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$, Any I/O to Ground		0.13		Ω
ESD Withstand Voltage	$V_{\text {ESD }}$	IEC61000-4-2 (Contact)	± 30			kV
		IEC61000-4-2 (Air)	± 30			kV
Diode Capacitance	$\mathrm{C}_{1 / \mathrm{O} \text { to GND }}$	Between I/O Pins and Ground $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		3.8	5.0	pF
	$\mathrm{C}_{10 \mathrm{tovolo}}$	Between I/O Pins $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		1.7		pF

Notes:

1. Rating with 2 pins connected together per sugguested diagram (For example, pin1 is connected to pin 10,
pin 2 is connected to $\operatorname{Pin} 9$, $\operatorname{Pin} 4$ is connected to pin 7 and pin 5 is connected to pin 6)
2. Transmission Line Pulse (TLP) with 100 ns width and 200 ps rise time.

Normalized Capacitance vs. Voltage

Insertion Loss (S21)

Expertise Applied | Answers Delivered

Clamping Voltage vs. I_{pp} (I/O to GND)

Pulse Waveform

Transmission Line Pulse (TLP)

Clamping Voltage vs. I Ipp (Line-to-Line, Two I/O Pins
Connected Together)

Non-Repetitive Peak Pulse Power vs. Pulse Time

Soldering Parameters

Reflow Condition		Pb - Free assembly
Pre Heat	- Temperature Min $\left(\mathrm{T}_{\text {smin }}\right)$	$150^{\circ} \mathrm{C}$
	-Temperature Max ($\mathrm{T}_{\text {s(max) }}$)	$200^{\circ} \mathrm{C}$
	- Time (min to max) (t_{s})	60-180 secs
Average ramp up rate (Liquidus) Temp (T_{L}) to peak		$3^{\circ} \mathrm{C} /$ second max
$\mathrm{T}_{\text {S (max) }}$ to T_{L} - Ramp-up Rate		$3^{\circ} \mathrm{C} /$ second max
Reflow	- Temperature (T_{L}) (Liquidus)	$217^{\circ} \mathrm{C}$
	- Temperature (t_{L})	60-150 seconds
Peak Temperature (T_{p})		$260+0 / 5{ }^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual peak Temperature (t_{p})		20-40 seconds
Ramp-down Rate		$6^{\circ} \mathrm{C} /$ second max
Time $25^{\circ} \mathrm{C}$ to peak Temperature (T_{p})		8 minutes Max.
Do not exceed		$260^{\circ} \mathrm{C}$

Product Characteristics

Lead Plating	Pre-Plated Frame
Lead Material	Copper Alloy
Lead Coplanarity	0.0004 inches $(0.102 \mathrm{~mm})$
Substrate material	Silicon
Body Material	Molded Epoxy
Flammability	UL 94 V-0

Part Numbering System

Part Marking System

Expertise Applied | Answers Delivered

Package Dimensions - μ DFN-10 (3.0x2.0mm)

Package	$\mu \mathrm{DFN}-10$ (3.0x2.0mm)					
JEDEC	MO-229					
	Millimeters			Inches		
崖bo	Min	Nom	Max	Min	Nom	Max
A	0.50	0.60	0.65	0.020	0.024	0.026
A1	0.00	0.03	0.05	0.000	0.001	0.002
A3	0.15 Ref			0.006 Ref		
b	0.15	0.20	0.25	0.006	0.008	0.010
b1	0.25	0.35	0.45	0.010	0.014	0.018
D	2.90	3.00	3.10	0.114	0.118	0.122
E	1.90	2.00	2.10	0.075	0.079	0.083
e	0.60 BSC			0.024 BSC		
e1	0.65 BSC			0.026 BSC		
e2	0.95 BSC			0.037		
L	0.25	0.30	0.35	0.010	0.012	0.014
L1	0.95	1.00	1.05	0.037	0.039	0.041

Notes:

1. All dimensions are in millimeters
2. Dimensions include solder plating.
3. Dimensions are exclusive of mold flash \& metal burr.
4. Blo is facing up for mold and facing down for trim/form, i.e. reverse trim/form.
5. Package surface matte finish VDI 11-13.

Tape \& Reel Specification - $\mu \mathrm{DFN}$-10 (3.0x2.0mm)

